Mineração de Dados
O que é e qual sua importância?
Mineração de dados (em inglês, data mining) é o processo de encontrar anomalias, padrões e correlações em grandes conjuntos de dados para prever resultados. Através de uma variedade de técnicas, você pode usar essas informações para aumentar a renda, cortar custos, melhorar o relacionamento com os clientes, reduzir riscos e mais.
História e avanços recentes da mineração de dados
O processo de minerar dados para descobrir conexões escondidas e prever tendências futuras tem uma longa história. Por vezes chamado de "descoberta de conhecimento em bancos de dados", o termo "mineração" só foi cunhado nos anos 1990, mas sua base compreende três disciplinas científicas entrelaçadas que existem há tempos: estatística (o estudo numérico das relações entre dados), inteligência artificial (inteligência exibida por softwares e/ou máquinas, que se assemelha à humana) e machine learning (algoritmos que podem aprender com dados para realizar previsões). A tecnologia de mineração de dados continua evoluindo para acompanhar o potencial ilimitado do big data e a computação de baixo custo.
Na última década, os avanços no poder e na velocidade de processamento nos permitiram ir de práticas manuais, tediosas e lentas para análises de dados rápidas, fáceis e automatizadas. Quanto mais complexos forem os conjuntos de dados coletados, mais potencial haverá para deles extrair insights relevantes. Varejistas, bancos, fabricantes, operadoras de telecomunicações, seguradoras etc, estão usando a mineração de dados para descobrir relações entre tudo — desde preços, promoções e demografias até como a economia, o risco, a concorrência e as mídias sociais estão afetando seus modelos de negócio, receitas, operações e relacionamentos com os clientes.
Qual a importância da mineração de dados?
Então qual a importância da mineração de dados? Você viu que os números são impressionantes — o volume de dados produzidos está dobrando a cada dois anos. Somente os dados não-estruturados compõem 90% do universo digital. Porém, mais informação não significa necessariamente mais conhecimento.
A mineração de dados permite que você:
- Separe todos os ruídos caóticos e repetitivos em seus dados;
- Entenda o que é relevante para, então, fazer um bom uso dessa informação para avaliar os resultados possíveis;
- Acelere o ritmo de tomadas de decisões bem-informadas.
Saiba mais sobre técnicas de mineração dados em Data Mining From A to Z, um relatório que mostra como as organizações podem usar análises preditivas e mineração de dados para obter novos inisghts com seus dados.
Mineração de dados no mundo de hoje
A mineração de dados é um dos fundamentos da inteligência analítica, que ajuda você a desenvolver modelos que podem descobrir conexões em milhões ou bilhões de registros. Saiba como a mineração de dados está transformando o mundo em que vivemos.
Desmistificando a mineração de dados em petroquímicas
Descubra como a mineração de dados – além de modelagem preditiva e análises em tempo real – estão sendo usadas em petroquímicas. Este white paper explora abordagens práticas, fluxos de trabalho e técnicas empregadas.
A intersecção entre big data e mineração de dados
Especialista em mineração de dados, Jared Dean publicou um livro sobre o tema, no qual ele explica como maximizar seu programa analítico usando computação de alta performance e advanced analytics.
Quadrante Mágico para Plataformas de Data Science
O Gartner nomeou o SAS como Líder no Quadrante Mágico para Plataformas de Data Science, e o "maior fornecedor do mercado de ciência de dados, em termos de lucro total e número de clientes".
Mineração de Dados de A a Z
Este paper cobre o que você precisa saber sobre mineração de dados, incluindo uma visão geral introdutória, as aplicações comuns em diferentes indústrias, um mergulho profundo no processo de mineração de dados e soluções de data mining da SAS.
Softwares de Mineração de Dados
Os softwares de mineração de dados do SAS usam alogitmos avançados, projetados para ajudá-lo a resolver seus maiores desafios.
Quem está usando?
A mineração de dados está no coração dos esforços analíticos em uma variedade de indústrias e disciplinas.
Telecomunicações
Em um mercado sobrecarregado, no qual a concorrência é grande, as respostas muitas vezes estão nos dados dos seus consumidores. Empresas de multimídia e telecomunicações podem usar modelos analíticos para dar sentido a milhões de dados de clientes, prever seus comportamentos e oferecer campanhas altamente segmentadas e relevantes.
Seguradoras
Com know-how analítico, as seguradoras podem resolver problemas complexos envolvendo fraude, conformidade, gestão de risco e atritos com clientes. As empresas têm usado técnicas de mineração de dados para avaliar os produtos de modo mais eficaz em todas as linhas de negócios e encontrar novas maneiras de oferecer produtos competitivos à sua base de clientes.
Educação
Com visualizações unificadas e baseadas em dados sobre o progresso dos alunos, os educadores podem prever o desempenho deles antes mesmo de entrarem na sala de aula – além de desenvolver estratégias de intervenção para mantê-los no caminho certo. A mineração de dados ajuda educadores a acessar dados dos alunos, prever conquistas e identificar quem precisa de uma atenção extra.
Manufatura
Alinhar planos de fornecimento com previsões de demandas é essencial, assim como detectar problemas cedo, garantir a qualidade e investir no valor da marca. Os fabricantes podem prever o desgaste dos ativos de produção e antecipar a necessidade de manutenção, o que pode maximizar o tempo de atividade e manter a linha de produção dentro do cronograma.
Bancos
Algoritmos automatizados ajudam os bancos a entender sua base de clientes, bem como as bilhões de transações no coração do sistema financeiro. A mineração de dados ajuda as empresas do setor a obter uma visão melhor dos riscos de mercado, detectar fraudes mais rapidamente, gerenciar obrigações de conformidade normativa e obter retornos ideais sobre seus investimentos de marketing.
Varejo
Grandes bancos de dados de clientes contêm insights escondidos que podem ajudá-lo a melhorar o relacionamento com os clientes, otimizar campanhas de marketing e prever vendas. Através de modelos de dados mais precisos, as empresas varejistas podem oferecer campanhas mais direcionadas – e encontrar a oferta que causa o maior impacto no cliente.
Veja como diferentes indústrias estão usando esta tecnologia
- Automotiva
- Bancária
- Bens de Consumo
- Defesa & Segurança
- Educação
- Ensino Superior
- Esportes
- Financeira
- Governo
- Hotelaria
- Life Sciences
- Manufatura
- Mídia
- Operadoras de Saúde
- Pequenas e Médias Empresas
- Petróleo & Gás
- Seguros
- Seguros de Saúde
- Tecnologia
- Telecomunicações
- Turismo & Transportes
- Utilities
- Varejo
Quando [mineração de dados e] análises preditivas são feitas do jeito certo, as análises não são um meio para um fim preditivo; em vez disso, as previsões desejadas tornam-se um meio para obter insights e descobertas analíticas. Fazemos um trabalho melhor em analisar o que realmente precisamos e prever o que realmente queremos.
Michael Schrage em Análises preditivas na prática , um relatório da Harvard Business Review Insight Center
Data mining software
SAS data mining software uses proven, cutting-edge algorithms designed to help you solve your biggest challenges.
Como funciona?
A mineração de dados, enquanto disciplina composta, representa uma variedade de métodos ou técnicas usadas em diferentes capacidades analíticas que abordam uma gama de necessidades organizacionais, fazem diferentes tipos de perguntas e usam diferentes níveis de entradas ou regras para chegar a uma decisão.
Modelagem descritiva: revela semelhanças compartilhadas ou agrupamentos em dados históricos para determinar as razões por trás do sucesso ou do fracasso, como a categorização de clientes por preferência de produtos ou emoções. Essas técnicas incluem:
Clustering | Agrupa registros semelhantes. |
Detecção de anomalias
| Identifica valores discrepantes multidimensionais.
|
Regras de associação
| Detecta relações entre registros.
|
Análise do componente principal
| Detecta relações entre variáveis. |
Grupos de afinidade | Agrupa pessoas com interesses ou objetivos semelhantes (ex., pessoas que compram X podem comprar Y e, possivelmente, Z).
|
Modelagem preditiva: vai mais fundo na hora de classificar eventos futuros ou estimar resultados desconhecidos — por exemplo, usando escoragem de crédito para determinar a probabilidade de um indivíduo quitar um empréstimo. A modelagem preditiva também ajuda na descoberta de insights para situações como churn de clientes, engajamento em campanhas ou padrões de crédito. Essas técnicas incluem:
Regressão | Uma medida da força da relação entre uma variável dependente e uma série de variáveis independentes. |
Redes neurais | Programas de computadores que detectam padrões, fazem previsões e aprendem disso. |
Árvores de decisão | Diagramas na forma de árvores em que cada galho representa uma ocorrência provável. |
Máquinas de vetores de suporte | Modelos de aprendizagem supervisionada com seus algoritmos de aprendizagem associados. |
Modelagem prescritiva: com o aumento no volume de dados não-estruturados a partir da web, campos de comentários, livros, e-mail, PDFs e outras fontes textuais, a adoção de mineração de texto como uma disciplina relacionada à mineração de dados também cresceu significativamente. Você precisa ser capaz de analisar, filtrar e transformar dados não-estruturados com sucesso para incluí-los em modelos preditivos e, então, melhorar a precisão de previsões.
No fim, você não deve olhar para a mineração de dados como uma entidade separada e única, porque o pré-processamento (preparação de dados e exploração de dados) e o pós-processamento (validação de modelos, escoragem, monitoramento de performance de modelos) são igualmente essenciais. A modelagem prescritiva olha para variáveis internas e externas, além de restrições, para recomendar um ou mais cursos de ação — por exemplo, determinar a melhor oferta de marketing a ser enviada para cada consumidor. Essas técnicas incluem:
Análises preditivas e suas regras
| Desenvolve regras do tipo se/então a partir de padrões e prevê resultados. |
Otimização de marketing
| Simula, em tempo real, o mix de mídia mais vantajoso para alcançar o maior ROI possível. |
Leia mais sobre este assunto
- Nerd in the herd: protecting elephants with data scienceA passionate SAS data scientist uses machine learning to detect tuberculosis in elephants. Find out how her research can help prevent the spread of the disease.
- Student lands dream job with help from SASA strong partnership between the University of Alabama and SAS put Cameron Jagoe on a path that led to his dream job with US Bank.
- Applying machine learning to IoT dataLet’s move beyond theoretical discussions about machine learning and the Internet of Things – and talk about practical business applications instead.
- Your personal data scientistImagine pushing a button on your desk and asking for the latest sales forecasts the same way you might ask Siri for the weather forecast. Find out what else is possible with a combination of natural language processing and machine learning.