Ask the Expert Webinar Series

How Can I Save Time and Build Trust With My Data Preparation?

On-Demand • Cost: Complimentary

About the webinar

Learn how to use AI and machine learning to scan data and make intelligent transformation suggestions, create prebuilt transformations and data cleansing functions, share automatically generated code with IT and data preparation jobs as centrally managed assets.

Learn data-driven, self-service data preparation techniques like transforming, blending, shaping and creating computational variables (feature engineering).

Cleanse and standardize data in an interactive, visual environment that guides you through data preparation processes.

You will learn:

  • How to move from "80% preparation and 20% analysis" to "20% preparation and 80% analysis."
  • To create explanatory variables (feature engineering) that can improve model (machine learning) performance.
  • Ways to improve confidence in data, increasing accessibility and trust in modeling.

Sie haben bereits ein SAS Profil? Dieses Formular automatisch ausfüllen: Einloggen

*
*
*
*
 
 

Wir behandeln Ihre persönlichen Daten gemäß dem SAS Privacy Statement.

 
  Ja, ich möchte von SAS Institute Inc. und seinen Tochterunternehmen per E-Mail Informationen zu SAS Produkten, Studien, White Paper und Veranstaltungen erhalten. Mir ist bekannt, dass ich meine Einwilligung jederzeit widerrufen kann, indem ich die Abmeldefunktion in den E-Mails nutze.
Nach dem Absenden dieses Formulars erhalten Sie eine E-Mail, in der wir Sie bitten, Ihre Einwilligung zu bestätigen (Double-Optin-Verfahren). Bitte schauen Sie in Ihrem Posteingang nach einer entsprechenden Nachricht von SAS und klicken den Bestätigungslink. Herzlichen Dank.
 
 

About the Expert


John Stultz
Principal Solutions Architect, SAS

Stultz has a 30-year career as a SAS® user and 21 years at SAS. He has worked in various sales, management and technical roles. He has used SAS to help the federal government, banking, insurance and health care improve techniques for fraud detection and mitigation risk. Previous experience includes deploying comprehensive data pre-processing, data validation and data management strategies to support the fusion of data and advanced analytics.