

# SAS Text Analytics, Time Series, Experimentation and Optimization Exam

### **Text Analytics - 30%**

#### Create data sources for text mining

- Create data sources that can be used by SAS Enterprise Miner Projects
- Identify data sources that are relevant for text mining

#### Import data into SAS Text Analytics

- Process document collections and create a single SAS data set for text mining using the Text Import Node
- Merge a SAS data set created from Text Importer with another SAS data set containing target information and other non-text variables
- Compare two models, one using only conventional input variables and another using the conventional inputs and some text mining variables

#### Use text mining to support forensic linguistics using stylometry techniques

#### **Retrieve information for Analysis**

- Use the Interactive Text Filter Viewer for information retrieval
- Use the Medline medical abstracts data for information retrieval

#### Parse and quantify Text

- Provide guidelines for using weights
- Use SVD to project documents and terms into a smaller dimension metric space
- Discuss Text Topic and Text Cluster results in light of the SVD

#### Perform predictive modeling on text data

- Explain the trade-off between predictive power and interpretability
- Set up Text Cluster and Text Topic nodes to affect this trade-off
- Perform predictive modeling using the Text Rule Builder node

#### Use the High-Performance (HP) Text Miner Node

- Identify the benefits of the HP Text Miner node
- Use the HPTMINE procedure



## Time Series - 30%

# Identify and define time series characteristics, components and the families of time series models

- Transform transactional data into time series data (Accumulate) using PROC TIMESERIES
  - Transactional Data Accumulation and Time Binning
- Define the systematic components in a time series (level, seasonality, trend, irregular, exogenous, cycle)
- Describe the decomposition of time series variation (noise and signal)
- List three families of time series models
  - exponential smoothing (ESM)
  - autoregressive integrated moving average with exogenous variables (ARIMAX)
  - unobserved components (UCM)
- Identify the strengths and weaknesses of the three model types
  - $\circ$  usability
  - $\circ$  complexity
  - o robustness
  - o ability to accommodate dynamic regression effects

#### Diagnose, fit and interpret ARIMAX Models

- Analyze a time series with respect to signal (system variation) and noise (random variation)
- Explain the importance of the Autocorrelation Function Plot and the White Noise Test in ARMA modeling
- Compare and contrast ARMA and ARIMA models
- Define a stationary time series and discuss its importance
- Describe and identify autoregressive and moving average processes
- Estimate an order 1 autoregressive model
- Evaluate estimates and goodness-of-fit statistics
- Explain the X in ARMAX
- Relate linear regression with time series regression models
- Recognize linear regression assumptions
- Explain the relationship between ordinary multiple linear regression models and time series regression models
- Explain how to use a holdout sample to forecast
- Given a scenario, use model statistics to evaluate forecast accuracy
- Given a scenario, use sample time series data to exemplify forecasting concepts

#### **Diagnose, fit and interpret Exponential Smoothing Models**

• Describe the history of ESM



- Explain how ESMs work and the types of systematic components they accommodate
- Describe each of the seven types of ESM formulas
- Given a sample data set, choose the best ESM using a hold-out sample, output fit statistics, and forecast data sets

#### **Diagnose, fit and interpret Unobserved Components Models**

- Describe the basic component models: level, slope, seasonal
- Be able to explain UCM strengths and when it would be good to use UCM
  Example: Visualization of component variation
- Given a sample scenario, be able to explain how you would build a UCM
  - Adding and deleting component models and interpreting the diagnostics

## **Experimentation & Incremental Response** Models - 20%

#### Explain the role of experiments in answering business questions

- Determine whether a business question should be answered with a statistical model
- Compare observational and experimental data
- List the considerations for designing an experiment
- Control the experiment for nuisance variables
- Explain the impact of nuisance variables on the results of an experiment
- Identify the benefits of deploying an experiment on a small scale

# Relate experimental design concepts and terminology to business concepts and terminology

- Define Design of Experiments (DOE) terms (response, factor, effect, blocking, etc)
- Map DOE terms to business marketing terms
- Define and interpret interactions between factors
- Compare one-factor-at-a-time (OFAT) experiment methods to factorial methods
- Describe the attributes of multifactor experiments (randomization, orthogonality, etc)
- Identify effects in a multifactor experiment
- Explain the difference between blocks and covariates

# Explain how incremental response models can identify cases that are most responsive to an action

- Design the experimental structure to assess the impact of the model versus the impact of the treatment
- Explain the effect of both the model and the message from assessment experiment data



- Describe the standard customer segments with respect to marketing campaign targets
- Explain the value of using control groups in data science
- Define an incremental response

#### Use the Incremental Response node in SAS Enterprise Miner

- List the required data structure components of the Incremental Response node
- Explain Net Information Value (NIV) and Penalized Net Information Value (PNIV) and their use in SAS Enterprise Miner
- Explain Weight of Evidence (WOE) and Net Weight of Evidence (NWOE) and their use in SAS Enterprise Miner
- Use stepwise regression with the Incremental Response node
- Adjust model properties for various types of incremental revenue analysis
- Compare variable/constant revenue and cost models
- Understand and explain the value of difference scores in the combined incremental response model
- Use difference scores to compare treatment and control

### **Optimization - 20%**

#### **Optimize linear programs**

- Explain local properties of functions that are used to solve mathematical optimization problems
- Use the OPTMODEL procedure to enter and solve simple linear programming problems
- Formulate linear programming problems using index sets and arrays of decision variables, families of constraints, and values stored in parameter arrays
- Modify a linear programming problem (changing bounds or coefficients, fixing variables, adding variables or constraints) within the OPTMODEL procedure
- Use the Data Envelope Analysis (DEA) linear programming technique

#### **Optimize nonlinear programs**

- Describe how, conceptually and geometrically, iterative improvement algorithms solve nonlinear programming problems
- Identify the optimality conditions for nonlinear programming problems
- Solve nonlinear programming problems using the OPTMODEL procedure
- Interpret information written to the SAS log during the solution of a nonlinear programming problem
- Differentiate between the NLP algorithms and how solver options influence the NLP algorithms

**Note:** All 17 main objectives will be tested on every exam. The 87 expanded objectives are provided for additional explanation and define the entire domain that could be tested.