S.Sas. THE POWER TO KNOW.

### SAS Advanced Predictive Modeling Exam

### **Neural Networks - 20%**

#### Describe key concepts underlying neural networks

- Use SAS procedures to perform nonlinear modeling
  - Use the NLIN procedure for non-linear regression
- Explain advantages and disadvantages of using neural networks compared to other approaches
  - Explain two ways to respond to the black-box objection
  - Compare and contrast variable selection, degrees of freedom to traditional approaches
  - Explain advantages of the Widrow-Hoff Delta rule

## Use two architectures offered by the Neural Network node to model either linear or non-linear input-output relationships

- Define the linear perceptron neural network
  - Define combination functions (linear, additive, equal slopes)
  - Define activation functions (logistic, tanh, arctan, softmax, exponential, identity)
  - o Explain the difference between activation and link functions
- Be able to demonstrate how a linear perceptron is a generalized linear model that is able to model many target distributions
  - Explain the difference between a general and generalized model
  - Demonstrate the power of the NEURAL procedure in SAS
- Construct multilayer perceptrons
  - Define the three layers in a basic multilayer perceptron (input, hidden, output)
  - Explain how you can obtain a skip-layer network
- Construct radial basis function networks
  - Compare ordinary and normalized
- Identify advantages of using a radial basis function network over using a multilayer perceptron (invert order)

# Use optimization methods offered by the SAS Enterprise Miner Neural Network node to efficiently search the parameter space in a neural network

- Describe the problem of local minima
- Explain the rationale behind the initialization settings
- Explain how early stopping and weight decay can be used to help avoid bad local minima



- Describe parameter estimation methods and determine best method to use
- List the assortment of error functions that are available in the Neural Networks node and determine the appropriate one to use based upon statistical considerations
  - Find the parameter set that minimizes the specified error function
  - Ordinary least squares
  - Maximum likelihood /Minimizing Deviance
  - o Robust estimation methods
    - Huber's M-estimation (HUBER)
  - Determine the appropriate activation and error function combination to apply based on the target data
- List the optimization (training) techniques available in the Neural Networks node and determine the appropriate method to use based upon statistical considerations
  - iterative updating
  - back propagation
    - Conjugate gradient
    - Quasi-Newton
    - Levenberg-Marquardt

## Construct custom network architectures by using the NEURAL procedure (PROC Neural)

- Working with SAS Enterprise Miner, use selected NEURAL procedure statements and PROC DMDB to construct neural networks
  - o ARCHI
  - CONNECT
  - HIDDEN
  - o INPUT
  - o PRELIM
  - TARGET
  - o TRAIN
- Define Sequential Network Construction (SNC) and use it to build an MLP(Multilayer Perceptron)
- Use weight interpretation to select relevant input variables
- Define a generalized additive neural network (GANN) and be able to explain the use of the GANN paradigm

## Based upon statistical considerations, use either time delayed neural networks, surrogate models to augment neural networks

- Given a particular scenario/problem, use the time delayed neural network (TDNN) model to conduct time series analysis
- Apply a surrogate model to help understand a neural network's predictions
  - o Interpret a neural network with a continuous target
  - Interpret a neural network with a discrete target

#### Use the HP Neural Node to perform high-speed training of a neural network



## **Logistic Regression - 30%**

#### Score new data sets using the LOGISTIC and PLM procedures

- Use the SCORE statement in the PLM procedure to score new cases
- Use the CODE statement in PROC LOGISITIC to score new data
- Describe when you would use the SCORE statement vs the CODE statement in PROC LOGISTIC
- Use the INMODEL/OUTMODEL options in PROC LOGISTIC
- Explain how to score new data when you have developed a model from a biased sample

#### Identify the potential challenges when preparing input data for a model

- Identify problems that missing values can cause in creating predictive models and scoring new data sets
- Identify limitations of Complete Case Analysis
- Explain problems caused by categorical variables with numerous levels
- Discuss the problem of redundant variables
- Discuss the problem of irrelevant and redundant variables
- Discuss the non-linearities and the problems they create in predictive models
- Discuss outliers and the problems they create in predictive models
- Describe quasi-complete separation
- Discuss the effect of interactions
- Determine when it is necessary to oversample data

## Use the DATA step to manipulate data with loops, arrays, conditional statements and functions

- Use ARRAYs to create missing indicators
- Use ARRAYS, LOOP, IF, and explicit OUTPUT statements

#### Improve the predictive power of categorical inputs

- Reduce the number of levels of a categorical variable
- Explain thresholding
- Explain Greenacre's method
- Cluster the levels of a categorical variable via Greenacre's method using the CLUSTER procedure
  - METHOD=WARD option
  - FREQ, VAR, ID statement
  - Use of ODS output to create an output data set
- Convert categorical variables to continuous using smooth weight of evidence



# Screen variables for irrelevance and non-linear association using the CORR procedure

- Explain how Hoeffding's D and Spearman statistics can be used to find irrelevant variables and non-linear associations
- Produce Spearman and Hoeffding's D statistic using the CORR procedure (VAR, WITH statement)
- Interpret a scatter plot of Hoeffding's D and Spearman statistic to identify irrelevant variables and non-linear associations

#### Screen variables for non-linearity using empirical logit plots

- Use the RANK procedure to bin continuous input variables (GROUPS=, OUT= option; VAR, RANK statements)
- Interpret RANK procedure output
- Use the MEANS procedure to calculate the sum and means for the target cases and total events (NWAY option; CLASS, VAR, OUTPUT statements)
- Create empirical logit plots with the GPLOT procedure
- Interpret empirical logit plots

#### Apply the principles of honest assessment to model performance measurement

- Explain techniques to honestly assess classifier performance
- Explain overfitting
- Explain differences between validation and test data
- Identify the impact of performing data preparation before data is split

#### Assess classifier performance using the confusion matrix

- Explain the confusion matrix
- Define: Accuracy, Error Rate, Sensitivity, Specificity, PV+, PV-
- Explain the effect of oversampling on the confusion matrix
- Adjust the confusion matrix for oversampling

#### Model selection and validation using training and validation data

- Divide data into training and validation data sets using the SURVEYSELECT procedure
- Discuss the subset selection methods available in PROC LOGISTIC
- Discuss methods to determine interactions (forward selection, with bar and @ notation)
- Create interaction plot with the results from PROC LOGISTIC
- Select the model with fit statistics (BIC, AIC, KS, Brier score)

# Create and interpret graphs (ROC, lift, and gains charts) for model comparison and selection



- Explain and interpret charts (ROC, Lift, Gains)
- Create a ROC curve (OUTROC option of the SCORE statement in the LOGISTIC procedure)
- Use the ROC and ROCCONTRAST statements to create an overlay plot of ROC curves for two or more models
- Explain the concept of depth as it relates to the gains chart

#### Establish effective decision cut-off values for scoring

- Illustrate a decision rule that maximizes the expected profit
- Explain the profit matrix and how to use it to estimate the profit per scored customer
- Calculate decision cutoffs using Bayes rule, given a profit matrix
- Determine optimum cutoff values from profit plots
- Given a profit matrix, and model results, determine the model with the highest average profit

### **Predictive Analytics on Big Data - 40%**

#### Build and interpret a cluster analysis in SAS Visual Statistics

- Assign roles for cluster analysis
- Set cluster matrix properties (number, seed, etc)
- Select the proper inputs for the k-means algorithm for a given cluster analysis scenario
- Choose the number of clusters for a given cluster analysis scenario
- Set Parallel coordinate properties for cluster analysis
- Interpret a cluster matrix
- Interpret a parallel coordinates plot
- Display summary statistics for clusters
- Interpret summary statistics for clusters
- Assign cluster IDs to the data within Visual Statistics
- Score observations into clusters based on the results from Visual Statistics

#### **Explain SAS high-performance computing**

- Identify limitations of traditional computing environments
- Describe the characteristics of SAS High-Performance Analytics procedures
- Compare SMP and MPP computing modes
- Distinguish between HPA and the LASR related operation

#### Perform principal component analysis

- Explain how principal component analysis is performed
- List the benefits and problems of principal component analysis



- Distinguish between clustering, variable clustering, and principal component analysis
- Determine the number of principal components to retain
- Compare IMSTAT, Visual Statistics, and High Performance Computing nodes in Enterprise Miner

#### Analyze categorical targets using logistic regression in SAS Visual Statistics

- Assign roles for logistic regression
- Assign properties for logistic regression
- Filter data used for logistic regression
- Interpret logistic regression results (fit summary, residual plots, ROC/Lift charts, etc)
- Use Group-By variables to perform binary logistic regression

#### Analyze categorical targets using decision trees in SAS Visual Statistics

- Assign roles for decision trees
- Assign properties for decision trees
- Interpret decision trees results (trees, leaf statistics, assessment, etc)
- Identify variable importance with decision trees for use in other analysis techniques
- Splitting criteria used by Visual Statistics

#### Analyze categorical targets using decision trees in PROC IMSTAT

- Use the DECISIONTREE statement to create decision trees
- Define input variables with the INPUT and NOMINAL options
- Create and retrieve saved trees for input data scoring with the SAVE, TREETAB, and ASSESS options
- Evaluate the output of ODS tables (DTREE, DTreeVarImpInfo, DTREESCORE, etc) from decision trees
- Use the ASSESS statement to create data sets for evaluating the decision tree model
- Perform honest assessment on PROC IMSTAT decision trees
- Assess decision trees using ODS statistical graphics (SGPLOT)

#### Analyze categorical targets using logistic regression in PROC IMSTAT

- Assign variables to roles for logistic regression in PROC IMSTAT
- Create logistic regression in PROC IMSTAT using the LOGISTIC statement
- Use selected options of the LOGISTIC STATEMENT (ROLEVAR, INPUTS, SCORE, CODE, SHOWSELECTED, SLSTAY=)
- Assess logistic regression models using ODS statistical graphics (SGPLOT)
- Perform honest assessment on PROC IMSTAT logistic regression

#### Build random forest models with PROC IMSTAT

- Describe random forests
- Use the RANDOMWOOODS statement to build a forest of trees



- Score data with the RANDOMWOODS score code
- List benefits of forests
- Interpret random forests
- Identify variable importance with forest for use in other analysis techniques

#### Analyze interval targets with SAS Visual Statistics

- Build linear regression models in SAS Visual Statistics
- Assign roles for linear regression models
- Set properties for linear regression models
- Assess a linear regression model (evaluate Fit summary statistics, residual plot, influence plot, summary table, etc)
- Assess linear model assumption violations and recognize when linear model is inadequate
- Build generalized linear models in SAS Visual Statistics
- Assign roles for generalized linear models
- Set properties for generalized linear models
- Assess a generalized linear model (evaluate Fit summary statistics, residual plot, assessment, etc)

#### Analyze interval targets with PROC IMSTAT

- Use GENMODEL and GLM statements
- Distinguish between GENMODEL and GLM statements and the results of each procedure
- Assign variables to roles for GENMODEL and GLM statements in PROC IMSTAT
- Create models with GENMODEL and GLM statements in PROC IMSTAT
- Use selected options of the GENMODEL and GLM statements in PROC IMSTAT
- Assess models using ODS statistical graphics (SGPLOT)
- Perform honest assessment on PROC IMSTAT linear models

#### Analyze zero inflated models with HPGLM in Enterprise Miner

- Identify when it would be appropriate to use mixture distribution
- Describe the link functions and distributions available in the HP GLM node
- Build a zero inflated generalized linear model in EM
- Describe restrictions on roles and levels in input data sources for generalized linear models in EM
- Assess a zero inflated generalized linear model (evaluate Fit summary statistics, residual plot, assessment, etc)



### **Open Source Models in SAS - 10%**

#### Incorporate an existing R program into SAS Enterprise Miner

- Enable R language statements to connect SAS to R
- Use the Open Source Integration node in SAS Enterprise Miner
  - Modes of operation (training, output)
  - Use Predictive Modeling Markup Language (PMML) in Open Source Integration Node
- Use Enterprise Miner variable handles to alter an R script
  - Use Enterprise Miner to run a random forest in R

#### Incorporate an existing Python program into SAS Enterprise Miner

- Determine steps to perform in SAS to incorporate a Python model
- Determine nodes in Enterprise Miner to incorporate a Python model
- Determine the necessary set up requirements for running Python models in SAS

**Note:** All 30 main objectives will be tested on every exam. The 185 expanded objectives are provided for additional explanation and define the entire domain that could be tested.