Applying Quantile
Regression to
Ratemaking: A

Measured Approach

This study explores the use of telematics data to understand the
relationship between driver behavior and insurance claims. It focuses on

quantile regression techniques for modeling claim frequency, providing
insights for insurance ratemaking.




Market Modeling Approach: GLMs and GAMs

Widely adopted modeling techniques in the actuarial field, providing a powerful framework for pricing:
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*Extension of linear regression, allowing for non-normal response
distributions and non-linear relationships through link functions.
*Handle diverse data structures by specifying appropriate
distribution families (e.g., Gaussian, Poisson, Gamma, etc.).

*Further extension of GLMs, offering greater flexibility through
the use of smooth functions (e.g., splines) to model complex,
non-linear relationships.

*Non-parametric approach that allows for automatic
identification of interactions and nonlinearities.

Limitations and Considerations:
* Distribution assumptions: The need for specifying a response distribution may not always accurately capture the underlying data. (Solution: testing

several distributions)

e Sensitivity to outliers: GLMs and GAMs can be sensitive to extreme observations, leading to biased estimates. (Solution Penalized approaches)
* Interpretability: While GAMs provide increased flexibility, their complexity can make interpretation and communication of results more challenging.
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Addressing Selection Challenges: Insights from Quantile Regression
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Data Introduction

The data set used in the analysis contains 6,006 observations and describes
the count of claims for automobile insurance . .
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GLM Factor Importance
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GLM Relativity Plots
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QR factor Importance
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QR factor Interpretability
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GLM VS QR

Champien MName Algorithm Name Average Squared Error Root Average Squared Error Root Mean Absolute Errer Reot Mean Squared Logarithmic Error
* QRO.5 Quantile Regression 01534 03917 04133 0.172¢9
GLM Count GLM 03312 0.5755 0.5501 0.2486
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Quantiles Study and Observations
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Variable Importance across Quantile
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Quantile Assessment

Policy N. Median 3° Quartile 90° Percentile 95° Percentile

Predicted: Claim_Count Predicted: Claim_Count Predicted: Claim_Count Predicted: Claim_Count
1000001 0.004747044 0.14255601658 0.2891028698 0.3820723342
1000002 0.0746615004 0.202270780% 0.375220882 0.4851351452
1000003 0.0036593336 0.1173456127 0.3047124235 0.4346234754
1000004 0.036009962 0.1174893193 0.2611172364 0.3841585473
1000005 0.0937414437 0.215132897 0.3765309345 0.4516364939
1000006 0.065947667 0.0497370919 01802781134 0.2968332382
1000007 0.0720394021 0.2004008823 0.3498224578 0.6462116376
1000008 0.0863%66894 (0.2529513444 0.4027705525 0.6438219887
1000009 0.2446003253 0.4177903825 0.6090034%87 0.7484135563
1000010 0.0865132254 0.2516162677 0.4377096144 0.5819673069

QR offers a detailed view of potential outcomes across different risk levels enabling more tailored and effective risk

management and pricing strategies. This can be done at single risk or portfolio level.
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Medel Comparison
Champion
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& Challenges and Limitations
SAS Viya

Lack of Data Crossing Inconsistent
Inference

When focusing on extreme Fitting multiple quantile The significance of

events there's often a lack regression models at predictors can change

of data in the upper different percentiles, the dramatically from one

quantiles. resulting quantile curves quantile to another.

can cross each other.

Separated Estimation

Many of these issues arise because quantile functions are typically estimated separately for each quantile,
without considering the relationships between them.
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Handling Heterogeneity

Quantile regression (QR)
directly models the relationship
between predictors and
different quantiles of the
response variable, not just the
conditional mean. This allows
QR to capture
heteroscedasticity and provide
information about the entire
distribution of the response,
unlike generalized linear
models which focus on
modeling the mean response.

O
|

Robustnhess to Outliers

Quantile regression is more
robust to the presence of
outliers compared to
generalized linear modeling.
QR minimizes the sum of
asymmetrically weighted
absolute residuals, reducing
the impact of extreme values
and providing a more accurate
representation of the
underlying risk factors.

AoV Advantages of Quantile Regression

Q

Flexibility of Assumptions

Quantile regression does not
rely heavily on the precise
nature of the dependence
structure among observations,
unlike traditional regression
methods that assume strict
independence. This flexibility
allows QR to capture the
relationship between predictors
and different parts of the
response distribution, even
when there are violations of the
independence assumption.
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Conclusion

Our study focused on the advantages of quantile regression over generalized linear modeling in the
ratemaking process. We used the SAS actuarial tool SAS Dynamic Actuarial Modeling software to
perform all the necessary analysis in the study. We began by introducing our telematics data on
automobile drivers, followed by a brief overview of quantile regression and generalized linear modeling
theory, and then we highlighted the key benefits of quantile regression.

In a practical example, we compared quantile regression to generalized linear modeling and
demonstrated that the model created by quantile regression was more accurate than the one created by
generalized linear modeling when applied to our data. Quantile regression is distribution-free, meaning
that there is no need to transform any of the variables or to determine the correct distribution for the
target variable. We also showed the robustness of quantile regression to outliers, which can lead to more
accurate predictions and premium calculations, improving underwriting performance and profitability.
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