Freedom.
Flexibility.
Cutting-edge Al.

Create models tfaster than ever with SAS Viya Workbench

Lars Arne Skar, Principal Pre-Sales Solutions Architect « Customer Advisory Technology Northern Europe

Pia Rennevik, Customer Success Manager, FANS, SAS Institute

Copyright © SAS Institute Inc. All rights reserved.

Development Challenges

Systems, People and Processes

=

Data Access

Immediate
access to data,
validating data,
and preparing for
development.

Copyright © SAS Institute Inc. All right

Speed of
Development

Quickly spin up,
reuse existing
code, and
choose your

coding language.

Seamless
Deployment

Preparing for
and seamlessly
deploying
models quickly
and efficiently.

Flexible
Infrastructure

Provisioning the
right-sized
environment and
scaling up &
down as needed.

Minimizing
Costs

Optimizing and
reducing cost
and complexity
within your
workspace.

Osas

OSasVIya = Empower data science teams with freedom,
Workbench | flexibility, and cutting-edge analytics to
Purpose-built for develop and prepare models ftast.

developers and modelers

o

Develop models with
speed while optimizing

Accelerate team Access industry-

productivity for SAS & leading analytics from

Python developers a partner you trust
alike

infrastructure costs

Access data. Build models. Prepare for deployment. All with Viya Workbench.
Copyright © SAS Institute Inc . All rights reserved _ §Sas

Microsoft Teams

Demo FANS Mini Forum

2024-11-06 08:45 UTC

Recorded by Organized by

Pia Regnnevik Pia Reannevik

Python-based modeling — open source or SAS, choice is yours

+ Code -+ Markdown | [» RunAll 'O Restart == Clear All Outputs | [&] Variables = Outline

Predict Loan Default

This project shows how we can write Python in SAS Viya Workbench, and how we can substitute Python models using Sci-Kit Learn for SAS models using the sasviya.ml package

Load Dependencies

D> v

import numpy as np
import pandas as pd

Packages for Building Model Pipeline

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import Pipeline

from sklearn.compose import ColumnTransformer

import matplotlib.pyplot as plt
%matplotlib inline

import seaborn as sns

from sklearn import metrics

from sklearn.metrics import confusion_matrix

from sklearn.metrics import roc_curve, auc

from sklearn.metrics import classification_report

from sklearn.model selection import train_test_split

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

from sklearn.tree import DecisionTreeClassifier
#from sasviya.ml.tree import DecisionTreeClassifier

[162] v/ 00s

Training with larger datasets - logreg and gradient boosting
Scitkit learn and sasviyaml libraries

+ Code -+ Markdown | [RunAll O Restart = ‘outs | [®) variables = Outline -

O
" Improving Credit Risk Scorecards with GenAl-based synthetic data

The demo is as follows:

Load credit data

Explore it

Perform binning/transformations

Build models using scikit-learn and SAS logistic regression methods
Create a new SAS logistic regression model on synthetic data
Register to Model Manager

import pandas as pd

import numpy as np

import warnings
warnings.filterwarnings('ignore’)
import matplotlib.pyplot as plt
%Zmatplotlib inline

from sasviya.core import Action, Datalib, Table

def test():
return print(“"test")

def woe binning(input_data: pd.DataFrame, nominal inputs: list[str], cont_inputs: list[str], target: str):
act_transform = Action("dataPreprocess”, "transform")
try: d

Make the models available to our Enterprise Viya environment

+ Code + Markdown | [> RunAll 'O Restart == Clear All Outputs Variables = Outline

Register Model to Model Manager

from sasctl import pzmm

from sasctl import Session

from sasctl.services import model repository as mr, model management as mm
from pathlib import Path

import requests

import os

get access token for viya env using refresh token. change to your own viya server and preferred authentication method.
url = "https://viya-cauki.unx.sas.com/"
auth url = f"{url}/SASLogon/oauth/token"
reading long-lived refresh token from txt file
refresh_token = Path(f'/workspaces/{os.environ["DEFAULT_MOUNTNAME"]}/boost-credit-scorecard-performance/python/cauki_refresh_token.txt').read_text().replace('\n', '")
payload=f'grant_type=refresh_token&refresh_token={refresh_token}'
headers = {
"Accept’: 'application/json’,
‘Content-Type': ‘'application/x-www-form-urlencoded’,
'Authorization’': 'Basic c2FzLmNsaTo="',

}

response = requests.request("POST", auth_url, headers=headers, data=payload, verify=False)
access_token = response.json()['access_token']

Osas

Copyright © SAS Institute Inc. All rights reserved.

	Title, Challenges & Advantages
	Slide 1: Freedom. Flexibility. Cutting-edge AI.
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Python-based modeling – open source or SAS, choice is yours
	Slide 6: Training with larger datasets – logreg and gradient boosting
	Slide 7: Make the models available to our Enterprise Viya environment

