
SAS Macro Programming

for Beginners

Susan J. Slaughter
Avocet Solutions

Lora D. Delwiche
University of California, Davis

What is SAS macro language?

• Programming language for string

manipulation

• Strings are characters

• Usually SAS statements or pieces of SAS

statements

• Normally considered advanced, but

concepts are not difficult

Why use macros?

• Harder to write than standard code

• But can save time and effort

– Make one change, SAS echoes

– Reusable code

– Make programs data driven

 Did you know?

 There are a billion bicycles in the world,

twice as many as motorcars.

 didyouknow.org/bicycles

SAS Macro Processor

You are writing a program that writes a program.

macro

statements
standard SAS

statements

Macro Processor

Macros vs. Macro Variables

Macro variables

• Start with &

• Single character

value

Macros

• Start with %

• Piece of a program

• May use macro

statements

• Often use macro

variables

Scope of macro variables

• Local macro variables

– Defined within a macro

– Can only be used in that macro

• Global macro variables

– Defined in “open code”

– Can be used anywhere

• Think globally and locally

Use of Quotes

• Macro processor does not check inside

‘single quotes’

 TITLE ‘Report for &Region’;

• Use “double quotes” for code containing

macro variables

 TITLE “Report for &Region”;

 TITLE “Report for Northwest”;

UC Davis

Source: City of Davis

Substituting text with %LET

• Simplest macro statement

• Assigns a value to a macro variable

 %LET macro-variable-name = value;

Substituting text with %LET

• Define macro variable

 %LET iterations = 5;

• Use macro variable

 DO i=1 TO &iterations;

• Resolves to standard SAS code

 DO i=1 TO 5;

Substituting text with %LET

• Define macro variable

 %LET winner = Bradley Wiggins;

• Use macro variable

 TITLE “First: &winner”;

• Resolves to standard SAS code

 TITLE “First: Bradley Wiggins”;

Models data

Model Class Price Frame

Black Bora Track 796 Aluminum

Delta Breeze Road 699 CroMoly

Jet Stream Track 1130 CroMoly

Mistral Road 1995 Carbon Comp

Nor'easter Mountain 899 Aluminum

Santa Ana Mountain 459 Aluminum

Scirocco Mountain 2256 Titanium

Trade Wind Road 759 Aluminum

Substituting text with %LET

• Define and use macro variable

%LET bikeclass = Mountain;

PROC PRINT DATA = models NOOBS;

 WHERE Class = "&bikeclass";

 FORMAT Price DOLLAR6.;

 TITLE "Current Models "

 "of &bikeclass Bicycles";

RUN;

Substituting text with %LET

• Resolves to standard SAS code

PROC PRINT DATA = models NOOBS;

 WHERE Type = "Mountain";

 FORMAT Price DOLLAR6.;

 TITLE "Current Models "

 "of Mountain Bicycles";

RUN;

Current Models of Mountain Bicycles

Model Class Price Frame

Nor'easter Mountain $899 Aluminum

Santa Ana Mountain $459 Aluminum

Scirocco Mountain $2,256 Titanium

American River Parkway

Photo by Rome Aban

What is a macro?

• A group of statements with a name

• To call or invoke a macro

– Use its name

– SAS substitutes the statements for the name

Creating modular code

• Define macro

 %MACRO macro-name;

 macro-text

 %MEND macro-name;

• Call macro

 %macro-name

Creating modular code

• Define macro

%MACRO printit;

 PROC PRINT DATA = models NOOBS;

 TITLE 'Current Models';

 VAR Model Class Frame Price;

 FORMAT Price DOLLAR6.;

 RUN;

%MEND printit;

Creating modular code

• Call macro

%printit

 PROC SORT DATA = models;

 BY Price;

%printit

Creating modular code

• Resolves to standard SAS code
 PROC PRINT DATA = models NOOBS;

 TITLE 'Current Models';

 VAR Model Class Frame Price;

 FORMAT Price DOLLAR6.;

 RUN;

 PROC SORT DATA = models;

 BY Price;

 PROC PRINT DATA = models NOOBS;

 TITLE 'Current Models';

 VAR Model Class Frame Price;

 FORMAT Price DOLLAR6.;

 RUN;

Current Models

Model Class Frame Price

Black Bora Track Aluminum $796

Delta Breeze Road CroMoly $699

Jet Stream Track CroMoly $1,130

Mistral Road Carbon Comp $1,995

Nor'easter Mountain Aluminum $899

Santa Ana Mountain Aluminum $459

Scirocco Mountain Titanium $2,256

Trade Wind Road Aluminum $759

Current Models

Model Class Frame Price

Santa Ana Mountain Aluminum $459

Delta Breeze Road CroMoly $699

Trade Wind Road Aluminum $759

Black Bora Track Aluminum $796

Nor'easter Mountain Aluminum $899

Jet Stream Track CroMoly $1,130

Mistral Road Carbon Comp $1,995

Scirocco Mountain Titanium $2,256

Photo by Eric Norris

Adding parameters to macros

• Parameters are macro variables

• Defined in macro

 %MACRO macro-name

 (parameter-1=, parameter-n=);

 macro-text

 %MEND macro-name;

Adding parameters to macros

• Define macro

%MACRO monthlyreport (month=, region=);

 macro-text

%MEND monthlyreport;

• Call macro

%monthlyreport (month=May, region=West)

Adding parameters to macros

• Define macro
%MACRO sortandprint (sortseq=, sortvar=);

 PROC SORT DATA = models;

 BY &sortseq &sortvar;

 PROC PRINT DATA = models NOOBS;

 TITLE 'Current Models';

 TITLE2 "Sorted by &sortseq &sortvar";

 VAR Model Class Frame Price;

 FORMAT Price DOLLAR6.;

 RUN;

%MEND sortandprint;

Adding parameters to macros

• Call macro

%sortandprint

 (sortseq=Descending, sortvar=Price)

Adding parameters to macros

• Resolves to standard SAS code
 PROC SORT DATA = models;

 BY Descending Price;

 PROC PRINT DATA = models NOOBS;

 TITLE 'Current Models';

 TITLE2 "Sorted by Descending Price";

 VAR Model Class Frame Price;

 FORMAT Price DOLLAR6.;

 RUN;

 Current Models

Sorted by Descending Price

Model Class Frame Price

Scirocco Mountain Titanium $2,256

Mistral Road Carbon Comp $1,995

Jet Stream Track CroMoly $1,130

Nor'easter Mountain Aluminum $899

Black Bora Track Aluminum $796

Trade Wind Road Aluminum $759

Delta Breeze Road CroMoly $699

Santa Ana Mountain Aluminum $459

Adding parameters to macros

• Call macro again

%sortandprint (sortseq=, sortvar=Class)

Adding parameters to macros

• Resolves to standard SAS code

 PROC SORT DATA = models;

 BY Class;

 PROC PRINT DATA = models NOOBS;

 TITLE 'Current Models';

 TITLE2 "Sorted by Class";

 VAR Model Class Frame Price;

 FORMAT Price DOLLAR6.;

 RUN;

 Current Models

 Sorted by Class

Model Class Frame Price

Scirocco Mountain Titanium $2,256

Nor'easter Mountain Aluminum $899

Santa Ana Mountain Aluminum $459

Mistral Road Carbon Comp $1,995

Trade Wind Road Aluminum $759

Delta Breeze Road CroMoly $699

Jet Stream Track CroMoly $1,130

Black Bora Track Aluminum $796

MPRINT option

• Normally you don’t see resolved macro

statements

• To see them use MPRINT system option

 OPTIONS MPRINT;

MPRINT option: SAS log

16 OPTIONS MPRINT;

17 %sortandprint(sortseq=, sortvar=Class)

MPRINT(SORTANDPRINT): PROC SORT DATA=models;

MPRINT(SORTANDPRINT): BY Class;

MPRINT(SORTANDPRINT): PROC PRINT DATA=models NOOBS;

MPRINT(SORTANDPRINT): TITLE 'Current Models';

MPRINT(SORTANDPRINT): TITLE2 "Sorted by Class";

MPRINT(SORTANDPRINT): VAR Model Class Frame Price;

MPRINT(SORTANDPRINT): FORMAT Price DOLLAR6.;

MPRINT(SORTANDPRINT): RUN;

Did you know?

American Major

Taylor won the

Bicycling World

Championship in

1899 in Montreal.

Source: Major Taylor by Andrew Richie

Conditional Logic

• Increase flexibility of macros

• Use macro statements:

 %IF %THEN %ELSE

 %IF %THEN %DO %END

Conditional Logic

%IF condition %THEN action;

 %ELSE %IF condition %THEN action;

 %ELSE action;

Conditional Logic

%IF condition %THEN %DO;

 action;

%END;

%IF vs. IF

• Different from standard IF statement

• Can only be used inside a macro

• These statements won’t appear in

standard SAS code

• Remember you are writing a program that

writes a program

Automatic Macro Variables

Variable

Name

Example

Description

&SYSDATE 01MAR13 Character value of

the date that job or

session began

&SYSDAY Friday Day of the week that

job or session

began

Orders data

ID Date Model Quantity

287 15FEB13 Delta Breeze 15

287 15FEB13 Santa Ana 15

274 16FEB13 Jet Stream 1

174 17FEB13 Santa Ana 20

174 17FEB13 Nor'easter 5

174 17FEB13 Scirocco 1

347 18FEB13 Mistral 1

287 21FEB13 Delta Breeze 30

287 21FEB13 Santa Ana 25

Conditional logic

• Define macro

 %MACRO reports;

 %IF &SYSDAY = Monday %THEN %DO;

 PROC PRINT DATA = orders NOOBS;

 FORMAT OrderDate DATE7.;

 TITLE "&SYSDAY Report: "

 "Current Orders";

 %END;

Conditional logic

 %ELSE %IF &SYSDAY = Friday %THEN %DO;

 PROC TABULATE DATA = orders;

 CLASS CustomerID;

 VAR Quantity;

 TABLE CustomerID ALL, Quantity;

 TITLE "&SYSDAY Report: Summary "

 "of Orders";

 %END;

 RUN;

%MEND reports;

Conditional logic

• Call macro

 %reports

Conditional logic

• On Monday resolves to

 PROC PRINT DATA = orders NOOBS;

 FORMAT OrderDate DATE7.;

 TITLE "Monday Report: "

 "Current Orders";

 Monday Report: Current Orders

 Customer Order

 ID Date Model Quantity

 287 15FEB13 Delta Breeze 15

 287 15FEB13 Santa Ana 15

 274 16FEB13 Jet Stream 1

 174 17FEB13 Santa Ana 20

 174 17FEB13 Nor'easter 5

 174 17FEB13 Scirocco 1

 347 18FEB13 Mistral 1

 287 21FEB13 Delta Breeze 30

 287 21FEB13 Santa Ana 25

Conditional logic

• On Friday resolves to

 PROC TABULATE DATA = orders;

 CLASS CustomerID;

 VAR Quantity;

 TABLE CustomerID ALL, Quantity;

 TITLE "Friday Report: Summary "

 "of Orders";

Friday Report: Summary of Orders

Quantity

Sum

CustomerID

174 26.00

274 1.00

287 85.00

347 1.00

All 113.00

Sacramento Valley

Photo by Eric Norris

Data-Driven Programs

• Let data determine values of macro

variables

• Problem—SAS doesn’t see data until

execution phase

• Macro variables resolved before execution

• Solution—Use CALL SYMPUT in a DATA

step and pass value to a later step

CALL SYMPUT routine

• Used in DATA step

• Assigns a value to a macro variable

CALL SYMPUT(“macro-variable”, value);

• Value is name of a variable

CALL SYMPUT routine

• Example value as variable name

IF Place = 1 THEN

 CALL SYMPUT(“WinningTime”, Time);

CALL SYMPUT routine

 PROC SORT DATA = orders;

 BY DESCENDING Quantity;

 DATA _NULL_;

 SET orders;

 IF _N_ = 1 THEN

 CALL SYMPUT("biggest", CustomerID);

 STOP;

Use Macro Variable

 PROC PRINT DATA = orders NOOBS;

 WHERE CustomerID = "&biggest";

 FORMAT OrderDate DATE7.;

 TITLE "Customer &biggest Had the "

 "Single Largest Order";

 RUN;

Data-Driven Program

• Resolves to

 PROC PRINT DATA = orders NOOBS;

 WHERE CustomerID = "287";

 FORMAT OrderDate DATE7.;

 TITLE "Customer 287 Had the "

 "Single Largest Order";

 RUN;

 Customer 287 Had the Single Largest Order

 Customer Order

 ID Date Model Quantity

 287 21FEB13 Delta Breeze 30

 287 21FEB13 Santa Ana 25

 287 15FEB13 Delta Breeze 15

 287 15FEB13 Santa Ana 15

Sacramento Valley

Photo by Jeff Hall

Avoiding problems

• Start simple and build piece by piece

• First write your program in standard SAS

code

• Then add macro features one at a time

Conclusions

• Macros can be complicated

• Macros can make your work easier

• Remember you are writing a program that

writes a program

Thank you!

Contact author

 susan@avocetsolutions.com

Download paper

 www.avocetsolutions.com

The Little SAS Book: A Primer

 Fifth Edition

