Getting Correct Results from PROC REG

Nate Derby

Stakana Analytics Seattle, WA, USA

SUCCESS 3/12/15

Outline

- 1 PROC REG
 - Basics
 - Checking Assumptions
 - Understanding the Output
- 2 Conclusions

Basics

PROC REG = Regression Analysis done with SAS.

What is regression analysis?

- Fitting the best-fit straight line through the data.
- Some assumptions required ...

Start with a scatterplot:

- Data: James Forbes, 1857.
- Boiling point vs air pressure.
- work.boiling.
- Does it fit a straight line?

Boiling Point vs Pressure

Fitting a Line

We want the line

Pressure = $\beta_0 + \beta_1$ Temperature :

SAS Code

```
proc reg data=boiling;
  model press = temp;
  plot press*temp;
run;
```

Boiling Point vs Pressure

Checking Assumptions

Model must be appropriate for the data.

- Check mathematical assumptions of the model.
- Look at residuals = difference between a point and its fitted value (i.e., value on the line)
 - Do they form a pattern? (Should be NO)
 - Do they fit a normal distribution? (Should be YES)
 - First one above more important than second.
- If assumptions above are violated, results could be false, possibly to the point of being completely misleading.

Checking for Residual Patterns

Goal: We want residuals to have no pattern whatsoever.

- Residual = What's left over after the modeled part.
- We assume all patterns accounted for by the model.

Examples of patterns:

- Grouped together into "clumps."
- All of one part of range above/below line.
- Farther away from line in one part of range than others.
- Outliers (sometimes, sometimes not).

Checking for Residual Patterns: SAS Code

PROC REG

Conclusions

```
In General
proc reg data=blah;
model yyy = xxx;
plot residual.*xxx;
plot residual.*yyy;
```

```
Forbes' Data
```

run;

```
proc reg data=boiling;
  model press = temp;
  plot residual.*temp;
run;
```

plot residual.*predicted.;

Boiling Point vs Model 1 Residual

Trouble in Paradise

Pattern: Clusters of negative residuals.

⇒ Assumption violation!

Two options:

- Modify the data: Transform one of the variables in the model.
- Modify the model: Change the linear equation in the model statement.
 - Add/substitute some variables in the model.

Modifying the Data

```
Pressure \Rightarrow 100 \times Log(Pressure): 
 100 \times \text{Log}(\text{ Pressure }) = \beta_0 + \beta_1 \text{Temperature }:
```

```
SAS Code
```

```
proc reg data=boiling;
  model hlogpress = temp;
  plot hlogpress*temp;
  plot residual.*predicted.;
run;
```

Boiling Point vs Log Pressure

Boiling Point vs Model 2 Residual

Checking for Residuals Fitting Normal Distribution

If residuals don't fit the *normal distribution* (bell curve), confidence intervals and hypothesis tests will be off.

All other results (i.e., estimates) will be valid.

We check this via a Quantile-Quantile Plot (Q-Q Plot):

- Compares quantiles (percentiles) of residual distribution to those of standard normal distribution.
- We want points to approximately fit a straight line.

Checking for Residuals Fitting Normal Distribution

SAS Code

```
proc reg data=boiling noprint;
  model press = temp;
  plot residual.*nqq. / nostat nomodel noline;
run;

proc reg data=boiling noprint;
  model hlogpress = temp;
  plot residual.*nqq. / nostat nomodel noline;
run;
```

Model 1 Residuals vs Normal Quantiles

Model 2 Residuals vs Normal Quantiles

PROC REG Output: Forbes' Model 2

The REG Procedure Model: MODEL2

Dependent Variable: hlogpress 100 x Log Pressure (Hg)

Number of Observations Read 17 Number of Observations Used 17

Analysis of Variance

			Sum of	Mean		
Source	1	DF	Squares	Square	F Value	Pr > F
Model		1 42	25.63910	425.63910	2962.79	<.0001
Error		15	2.15493	0.14366		
Corrected Tot	al	16 42	27.79402			
	Root MSE		0.37903	R-Square	0.9950	
	Dependent Mea	an 13	39.60529 0.27150	Adj R-Sq	0.9946	
	COEII Vai		0.2/130			

Parameter Estimates

Variable	Label		DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept temp	Intercept Boiling Point	(F)	1	-42.13778 0.89549	3.34020 0.01645	-12.62 54.43	<.0001 <.0001

log GDP vs Democracy Index

PROC REG Output: Democracy Index

The REG Procedure Model: MODEL1 Dependent Variable: Gurr Index (1995)

Number of Observations Read 112
Number of Observations Used 111
Number of Observations with Missing Values 1

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	tal	1 109 110	534.76792 4734.97983 5269.74775	534.76792 43.44018	12.31	0.0007
	Root MSE Dependent Coeff Var	Mean	6.59092 3.50450 188.06986	R-Square Adj R-Sq	0.1015 0.0932	

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
-	Intercept	1	-12.98347	4.74073	-2.74	0.0072
lgdp	Log GDP (1985)	1	2.06913	0.58973	3.51	0.0007

Valve Orders vs Shipments

Valve Orders vs Model 3 Residual

SAS Output

The REG Procedure Model: MODEL1

Dependent Variable: shipments Shipments

Number	of	Observations	Read			54
Number	of	Observations	Used			53
Number	of	Observations	with	Missing	Values	1

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	otal	1 51 52	38818277 28218196 67036473	38818277 553298	70.16	<.0001
	Root MSE Dependent Me Coeff Var	ean	743.84001 41527 1.79124	R-Square Adj R-Sq	0.5791 0.5708	

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	20966	2456.79440	8.53	<.0001
orders	Orders		0.56613	0.06759	8.38	<.0001

Problems

Actually, the conclusions are all false.

⇒ There is actually *no* relationship between orders and shipments.

Look at residuals another way:

```
SAS Code
proc reg data=valves;
  var date;
  model shipments = orders;
  plot residual.*date;
run;
```

Date vs Model 3 Residual

Valve Orders vs Shipments

Conclusions

When fitting a model with PROC REG,

- Check the assumptions:
 - Is there a pattern with residuals vs other variables? (NO)
 - Do the residuals fit a bell curve? (YES)
 - For time series: Is there a pattern with residuals vs time? (NO)
- I ook at results:
 - Is the R-squared value close to 1? (YES)
 - Are individual p-values less than 0.05? (YES)
 - Is the p-value for the analysis of variance less than 0.05?
 (YES)

Further Resources

UCLA Help:

www.ats.ucla.edu/stat/sas/output/reg.htm