Survival Analysis with Time-Dependent Covariates: A Practical Example

October 28, 2016 SAS Health Users Group Maria Eberg

Outline

- Why use time-dependent covariates?
- Things to consider in definition of timedependent covariates
- Counting process type of data input
- Example of definition and analysis of data with multiple time-dependent covariates

When should one use time-dependent covariates?

Solution for "immortal time-bias".

 Immortal time refers to a period of follow-up during which, by design, death or the study outcome cannot occur.

Important covariates may change over time in studies with long-term follow-up.

Before you start coding...

- 1. What functional form of the time-dependent covariate makes sense:
 - Cumulative, current, ever-use
 - Time-lag (depends on the biological effect)

2. Exogeneity

Covariates are external or exogenous if they are determined by factors outside the system or the individual under study.

Air pollution – exogenous (external) covariate Blood pressure, disease complications – endogenous (internal) covariates

Counting process type of input

Multiple records are created for each subject, one record for each distinct pattern of the time-dependent measurements.

Caution:

- No nested or overlapping intervals;
- Intervals of zero length do not contribute to the analyses.

Practical example – study design

Index event – prostate cancer diagnosis

Main exposure – statin use

- 1-year lag to avoid reverse causality
- Multiple definitions:
 - Ever-never,
 - cumulative days of use,
 - cumulative dose
- Cumulative days of use or cumulative dose taken a summary of exposure history

Outcomes – death due to prostate cancer, allcause mortality

Covariates:

- Fixed at baseline:
 - Demographic and lifestyle (age, sex, smoking status, BMI, alcohol abuse)
 - Comorbidities (MI, stroke/TIA, peripheral artery disease, chronic kidney disease, previous cancer)
 - Indicators of disease severity (Gleason score, prostate cancer treatments)
 - Medication use (including pre-diagnostic use of statins)
- Time-dependent: Prostate specific antigen (PSA) testing count

Creating long data

ID	DIAG_DATE	то	END_FU	EVENT
1	01JAN2001	01JAN2002	31MAR2010	0
2	15APR2004	15APR2005	09OCT2007	1
3	27SEP2003	27SEP2004	10JUL2009	2

```
data byday;
    set original;
    do istart = t0 to (end_fu - 1);
        iend = istart + 1;
        output;
    end;
```

run;

Creating long data (2)

ID	DIAG_DATE	то	END_FU	EVENT	ISTART	IEND
1	01JAN2001	01JAN2002	31MAR2010	0	01JAN2002	02JAN2002
1	01JAN2001	01JAN2002	31MAR2010	0	02JAN2002	03JAN2002
1	01JAN2001	01JAN2002	31MAR2010	0	03JAN2002	04JAN2002
1	01JAN2001	01JAN2002	31MAR2010	0	30MAR2010	31MAR2010
2	15APR2004	15APR2005	09OCT2007	1	15APR2005	16APR2005
2	15APR2004	15APR2005	09OCT2007	1	16APR2005	17APR2005
2	15APR2004	15APR2005	09OCT2007	1	17APR2005	18APR2005
2	15APR2004	15APR2005	09OCT2007	1	080CT2007	09OCT2007

Getting covariate information

ID	RX_DATE	DURATION		DOSE	END_FU	Exposed_1st	
1	01JUL2003	28		1	31MAR2010	01JUL2004	
1	15SEP2004	14		0.5	31MAR2010	01JUL2004	
1	22SEP2004	28		1	31MAR2010	01JUL2004	

data statin_byday;

```
set statin_rx;
do istart = rx_date to (rx_date + duration);
    iend = istart + 1;
    statin_i = 1;
    output;
```

end;

run;

run;

Defining cumulative variables

```
data TD combined;
   merge byday (in=a) statin byday(where = (istart >= exposed 1<sup>st</sup>));
   by id istart iend;
   if a;
   retain statin 01 cumdur cumdose;
   if first.id then do;
         statin_01 = 0;
         cumdur = 0;
                                Assign initial values to 0
         cumdose = 0;
   end;
   if istart = exposed 1<sup>st</sup> then do;
                                             When patient becomes exposed, assign
         statin 01 = 1;
                                             baseline values for cumulative exposure
         cumdur = basedur;
                                             variables
         cumdose = basedose;
   end;
   if statin i = 1 then do;
         cumdur = cumdur + 1;
                                            Update cumulative exposure during the follow-up
         cumdose = cumdose + dose;
   end;
```

Dataset with cumulative variables

ID	то	END_FU	EVENT	ISTART	IEND	STATIN_I	STATIN_01	CUMDUR	CUMDOSE
1001	01JAN2002	31MAR2010	0	01JAN2002	02JAN2002	0	0	No Use	No Use
1001	01JAN2002	31MAR2010	0	02JAN2002	03JAN2002	0	0	No Use	No Use
1001									
1001	01JAN2002	31MAR2010	0	01JUL2004	02JUL2004	0	1	< 1 year	< 365 DDD
1001	01JAN2002	31MAR2010	0	02JUL2004	03JUL2004	0	1	< 1 year	< 365 DDD
1001									
1001	01JAN2002	31MAR2010	0	15SEP2004	16SEP2004	1	1	< 1 year	< 365 DDD
1001	01JAN2002	31MAR2010	0	16SEP2004	17SEP2004	1	1	< 1 year	< 365 DDD
1001									
1001	01JAN2002	31MAR2010	0	30MAR2010	31MAR2010	0	1	< 1 year	< 365 DDD

Cumulative duration and dose variables were formatted as:

No use - patient is unexposed during the follow-up

< 1 year – cumulative exposure is less than 365 days or defined daily doses (DDD)

1-2 years - cumulative exposure is 365 - 730 days or DDDs

2 – 3 years – cumulative exposure is 731 – 1095 days or DDDs

3+ years - cumulative exposure is over 1095 days or DDDs

Combining time intervals

Within PROC SQL we:

- 1) Combined daily episodes into informative intervals when changes occur;
- 2) Assigned the same time origin for all the patients.

Last step is to assign time-dependent event variable to be:

- 0 for all intervals prior to the last one;
- the value of event variable for the last interval.

Final dataset and fitting PROC PHREG

ID	EVENT	STATIN_01	CUMDUR	CUMDOSE	START	END	TIME1	TIME2	EVENT_TD
1	0	0	No Use	No use	01JAN2002	01JUL2004	0	912	0
1	0	1	< 1 year	< 1 year	01JUL2004	31MAR2010	912	3011	0
2	1	0	No Use	No use	15APR2005	09OCT2007	0	907	1
3	2	0	No Use	No use	27SEP2004	15SEP2005	0	353	0
3	2	1	< 1 year	< 1 year	15SEP2005	01NOV2006	353	765	0
3	2	1	1 – 2 years	1 – 2 years	01NOV2006	08AUG2008	765	1411	2

Crude model with binary statin variable:

```
proc phreg data = FINAL;
    class statin_01/ref = first;
    model (time1, time2) * event_TD (0, 2) = statin_01/ties = EFRON rl;
```

Take Home Messages

- Use of time-dependent vs time-fixed covariates offers a solution to "immortal time" bias and allows one to update information on covariates that vary over time.
- However, covariates must be carefully constructed to ensure interpretability.
- Counting process type of input may be more preferable in case of multiple time-dependent covariates **BUT** need to ensure:
 - time intervals do not overlap;
 - there are no intervals of zero length.

THANK YOU!

Questions?

Key References

- Levesque L, Hanley JA, Kezouh A, Suissa S. Problem of immortal time bias in cohort studies: example using statins for preventing progression of diabetes. BMJ 2010;340:b5087
- Allison PD (2010). Survival Analysis Using SAS: A Practical Guide. 2nd edition. SAS Publishing, Cary
- Powell TM, Bagnell ME. SAS Global Forum 2012, Your "survival" guide to using time-dependent Covariates. SAS Institute Inc. 2012; Paper 168
- Yu O, Eberg M, Benayoun S, Aprikian A, Batist G, Suissa S, Azoulay L Use of Statins and the Risk of Death in Patients With Prostate Cancer. JCO January 1, 2014 vol. 32 no. 1 5-11